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ABSTRACT

The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite
structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many
challenges. Economic justification for these structures requires, light weight, reusable
components with an infrastructure allowing periodic evaluation of structural integrity after
enduring demanding stresses during operation. A major focus has been placed on the use of
acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study
into characterizing the nature of acoustic signal propagation at very low temperatures and

developing the methodology of applying AE sensors to monitor cryogenic components.

This work addresses the question of sensor performance in the cryogenic environment. Problems
involving sensor mounting, spectral response and durability are addressed. The results of this
work provides a common point of measure from which sensor selection can be made when

testing composite components at cryogenic temperatures.



1.0 INTRODUCTION

Three questions arise when applying AE analysis to a loaded structure in a cryogenic
environment. First, how do the sensors react to the cryogenic environment. Secondly, how does
the cryogenic environment effect the acoustic propagation characteristics in the composite and
sensor couplant. Lastly, how does the composite material behave at cryogenic temperatures.
The first of these questions is answered in this report by conducting a series of tests to
characterize how acoustic emission sensors perform when subjected to a cryogenic environment.
The later two points are works in progress and will be appended to this report as they are

completed.

Several commercially available sensors were selected for this study based upon availability, size
and frequency response. The application of AE to large composite fuel tanks, anticipated for
future launch systems, would involve many sensors (50+), to provide adequate coverage in what
is a highly attenuative material. Due to the limited space available for mounting sensors and the
weight restrictions on a launch vehicle, the size of the sensors are very important during sensor
selection. The frequency response bandwidth of the chosen sensor would need to be in the range
of 100 kHz to 2.0 MHz to ensure that the signals from the various failure modes in the composite

were detected.

Each sensor used in this study went though a series of cryogenic tests involving exposure to
temperatures down to approximately -320 °F, the nominal temperature of liquid nitrogen “LN,”.
Of particular interest was the amount and nature of the acoustic activity generated by the sensors
as they cooled to the cryogenic temperature and then warmed back up to ambient conditions.
The survivability of each sensor to thermal cycling was tested over ten thermal cycles from room
temperature (nominally 75 °F) to -320 °F and back to room temperature. Also, of interest was
how the cryogenic environment affected sensor performance. Here, the sensors were pulsed
from a common source as they cooled and the amplitude and spectral response recorded. In this
manner the fidelity of each sensor could be checked and compared between themselves and at

various temperatures.



2.0 EXPERIMENTAL

In all, twelve sensors were thermally cycled for this study. A summary of the manufacturer, size,
and construction of each sensor is given in Table 1. Each sensor was pulsed from a common 5.0
MHz ultrasonic sensor. Here, an eighteen inch long, half inch diameter 6061 -T6 aluminum rod
was used as a wave guide and the sensors and pulser were bonded with hot melt glue. After
establishing the reference condition of each sensor it was tested for cumulative activity and
frequency response variations during cool down.

Table 1. Sensors tested.

Manufacturer |  Model | SN | Diameter(inch) | Cable | Location | Wear Plate |
Harisonic | HAE-1004 | MI10056 0.40 Microdot End Ceramic |
Harisonic CM-0204 J12050 0.40 Microdot End Ceramic

Digital Wave B-1025 944240 0.43 Microdot Side Ceramic

PAC R15 AL78 0.69 Microdot Side Ceramic
PAC R30 302 0.69 Microdot Side Ceramic
PAC S9208 AC36 1.00 Microdot Side Metal
PAC WD ACS81 0.69 Differential Side Ceramic
PAC S9215 ABS53 0.75 BNC Side Metal
PAC R15-T1 AAO1 0.69 Microdot Top Ceramic
PAC R15-T2 AAQ2 0.69 Microdot Top Ceramic
PAC Mini-30 ABS50 0.40 BNC Top Ceramic
PAC Nano-30 AAQ2 0.25 BNC Top Ceramic

PAC = Physical Acoustics Corporation

The primary intent of the first phase of testing was to determine how the sensors react to a
cryogenic environment. That is, what signals are generated by the sensors alone as they cool
from normal room temperature to near liquid nitrogen temperatures. To accomplish this task, the
sensors were suspended by their lead wire in a beaker submerged in a liquid nitrogen bath
(Figure 1). The air temperature from the bottom of the beaker to just below the nitrogen level
was measured with a thermocouple to be in the range of -320 °F. The acoustic emission system
was configured for continuous operation and the sensors were suspended one at a time near the
bottom of the inner beaker and monitored for 30 to 60 minutes. Lead breaks (0.5 mm HB) were
performed on the sides of the beaker and cross support holding the sensor to determine if the boil
off of the LN, along the outside of the inner beaker created any measurable AE at the sensor
position. None of the lead breaks were received by the AE system verifying that the only signals
recorded would be from the sensors themselves encountering a thermal gradient. After
completing the chill down cycle the AE system was paused and the sensor removed from the
nitrogen container. The AE system was restarted and left to run for 10 additional minutes so that
the warm-up emissions could be recorded. This process was repeated for a total of ten cryogenic
cycles or until the sensor failed to operate. Appendix A outlines the ten cryogenic tests.
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Figure 1. Configuration to measure sensor activity during cool down.

The second phase of this project involved measuring sensor performance during cool down and
at cryogenic temperatures. Here the reference frequency response was compared to the response
curves generated for each sensor as it cooled to LN, levels and stabilized. As in the initial sensor
check-out tests, an 18 inch aluminum rod was used as a waveguide between the 5.0 MHz pulser
and test AE sensor. The rod was held vertically over the cryogenic container with the AE sensor
positioned just off the bottom of the inner “chilled” beaker (Figure 2). The receiving sensor was
bonded with a proprietary cryogenic tolerant adhesive while the pulser was attached with hot
melt glue. In this manner a common excitation signal could be received and compared between
sensors at various points in the cool down cycle. An acousto-ultrasonic style system was
incorporated to take these measurements. The system fired the pulser; recorded the signal from
the AE sensor and computed the subsequent power spectrum. Measurements were taken at room
temperature and then every 15 minutes over the one hour cool down, for a total of five
measurements.
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Figure 2. Configuration for pulse test during cool down.



3.0 RESULTS

The sensors were compared based upon activity during cool down, activity during warm up, time
to the first 10% of cumulative activity, time to 90% of cumulative activity, stability between
cycles and cycle life. Overall acoustic activity during cool down would indicate the amount of
data that would have to be filtered out after a cryogenic structural test. The time to 10% and 90%
of cumulative activity would provide a measure of the event rate and settling time for each
sensor. Finally, the stability between cycles and cycle life of the sensor can tell which sensors
are rugged enough to be used in a cryogenic environment.

As shown in Table 2 and Figure 3, the overall noisiest three sensors during cool down were the
CM-0204 (2669 signals) followed by the HAE-1004 (1994 signals) and the B-1025 (1617
signals). On the other side of the spectrum the quietest three sensors during cool down were the
S9208 (170 signals) then the WD (489 signals) and mini-30 (592). The nature of these signals
will be described later, but the sheer magnitude of AE activity indicates that for most practical
testing situations it will not be practical to record AE activity during cool down. Not only will it
be difficult to separate the sensor noise AE from the material activity, the rate of noise related
activity may interfere with good signal collection. In other words, the high noise signal rate will
increase the probability that mixed material and noise AE signals will be collected as single
source events.

Table 2. Sensor activity

Sensor 1.D. Cumulative activity Sensor 1.D. Time to Sensor 1.D. Time to
during cool down | _10% Maximum 90% Maximurl_
S9208 170 | | B1025 [ 19 B-1025 356
WD 489 CM-0204 51 Nano-30 422
Mini-30 592 HAE-1004 84 CM-0204 432
Nano-30 797 Nano-30 93 Mini-30 454
R15 978 WD 89 HAE-1004 661
R30 1253 Mini-30 150 §$9208 760
R15-12 1343 R15T-2 180 R15T-1 795
R15-t1 1562 89215 194 R15T-2 801
S9215 1616 R15 196 R30 943
B-1025 1617 R30 198 R15 1015
HAE-1004 1994 R15T-1 220 WD 1146
CM-0204 2669 59208 265 S9215 1219

After the sensors had reached thermal equilibrium at -320 °F, the data collection system was
paused and the sensors removed from the inner beaker. The AE system was then allowed to
continue acquiring data during the warm-up. In general, very little AE activity was recorded
during the warm-up, and after approximately 5 minutes at room temperature no additional
activity was recorded for any of the sensors. Overall, less than 10% of the cumulative activity
recorded during the entire test, cool down and warm-up, was recorded during the warm-up
period. The noisiest three sensors during the warm-up period were the WD, §9208 and B-1025
sensors. The quietest sensors were the Nano-30 followed by the HAE-1004 and CM-0204, all
with less than 0.3% activity during the warm-up period.
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Figure 3. Sensor activity during first cycle cool down to -320 °F

By observing the second activity plot (Figure 4), one can see that each sensor responds to the
cool down at a slightly different rate. The time when the activity has reached 10% and 90%
allows provides an indication of the time required to wait after exposing the sensors to a
cryogenic environment before the majority of AE recorded is known not to come from the sensor
itself cooling down. These times thus provide a measure of how long AE measurements would
need to be paused as the structure cools down before data acquisition could begin. The B-1025
sensor stabilized the quickest (356 seconds) of all the sensors tested followed by the Nano-30
(422 seconds) and the CM-0204 (432 seconds). The longest settling time of the sensors came
from the S9215, which took over 20 minutes to begin to level out. The WD and R15 were also
slow taking over 17 minutes to stabilize. A summary of the settling times for each system is
provided in Table 3. A long term exposure test (1 hour) confirmed that little activity was
produced after the initial cooldown and that after approximately 45 minutes no appreciable
activity was produced (Appendix B)

The characteristics of each sensor over the ten cryogenic cycles was fairly repeatable. No
appreciable changes in the frequency, amplitude or energy content of the signals were noted.
There was a slight decrease in the cumulative AE activity with cycling, but as shown in Figure 5,
the amount of AE generated between cryogenic varied greatly enough that a trend could not be
established for all sensors. Overall, no more than a 10% decrease in signal activity was present
for any of the sensors tested. Appendix C summarizes the activity rates for each sensor during
the ten cryogenic cycles.

Only two of the sensors tested failed during the cryogenic cycling. The HAE-1004 sensor failed
after the second cycle while the B-1025 sensor failed after the fifth cycle. In both cases the wear



plate on the sensor face shattered and debonded from the sensor. In general the features of the
AE activity covered the entire spectrum which would make it difficult to post filter the data to
eliminate the signals originating from the cool down. Classically the most descriptive features
used to describe AE signals are its amplitude, energy and frequency spectrum. Typical
amplitude histograms and energy versus amplitude plots are shown in Figures 6 and 7 for the
first cool down test.
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Figure 4. Sensor activity during first cycle cool down to -320 °F
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During the second phase of sensor testing the effect the cryogenic environment had on the
fidelity of each sensor was measured. Here, each AE sensor was pulsed with a common signal
the subsequent reaction recorded. In general, there were no observable or noteworthy changes in
the resonance peaks as the sensors cooled. In fact, as shown in Figure §, the relative amount of
signal energy increased for the resonant peaks when the sensors were coldest. An additional
benefit of this characteristic is that if sensor spacing is determined at room temperature then
adequate coverage is guaranteed at cryogenic temperatures. The signals and power spectra for
each sensor at their reference condition as well as after two and five cryogenic cycles are
provided in Appendix D through E.
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4.0 SENSOR PERFORMANCE TESTING AT -440 °F

A series of tests were planned for testing the sensors at approximately -440 °F, the temperature
of liquid helium. At these temperatures special hardware is necessary to contain and transport
liquid helium due to its narrow operational temperature range. The facilities to handle the LH,
were to be made available through MSFC’s Space Sciences Division. The hardware to support
the transducers was designed and fabricated at UAH.

Due to scheduling conflicts and difficulty in acquiring the necessary hardware this portion of the
task has not been completed. Now though, with all the hardware in place, the helium tests
should be able to be completed in a timely manner. When the testing is completed the results
will be appended to this report.

5.0 TENSILE TESTING AT -320 °F

The process of tensile testing a composite sample while submerged in a cryogenic fluid meant
the development of a specialized “wet grip”. The grip serves to hold one end of the composite
sample while that end is submerged in LN, and is attached to the activation ram of a hydraulic
tensile testing machine. A schematic of the grip system is shown in Figure 9 and 10.
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Figure 9. Cryogenic grip
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The grip mechanism has just recently been completed and is now undergoing stress testing to
ensure that it will not fail during operation. Testing of composite samples will begin shortly and
the results appended to this report.



6.0 CONCLUSIONS

The sensor tests addressed in this report have shown that there are several commercially
available sensors rugged enough and with sufficient fidelity to be used during AE testing in a
cryogenic environment. In general, the sensor activity during cool down begins to stabilize after
approximately 10 minutes and reaches an insignificant level after 45 minutes at cryogenic (-320
°F) temperatures. As expected, the larger the sensor, the longer it takes to stabilize and lower the

initial activity rate due to the larger thermal mass.

The nature of the AE activity recorded during cool down covers a broad range of parametric and
spectral (frequency) values. Post filtering of this data based upon simple amplitude, energy or
frequency filters may not be possible. To ensure that the cryogenic signals from the sensors are
not recorded as material AE one will most likely have to wait until the sensor thermally stabilizes
with the structure or devise some method of prechilling the sensors before the structure is

thermally or mechanically loaded.

The performance of the sensors appears to be similar in the cryogenic environment as at room
temperature. The signals recorded by the sensors and their subsequent power spectra remain
unchanged during the cool down. The only noticeable difference is a slight increase in the
energy of the signals at cryogenic temperatures. It is not known at this time whether the increase
in energy is solely attributable to the sensor or some function of the waveguide being

supercooled.
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7.0 APPENDICES

APPENDIX A

Summary of Cryogenic Tests

l Test 1 I
Filename Sensor Schedule Hits Date

R30T004 R30 30 cool down + 5 warm-up 1310 1/31/97
R15TRO1 R15 30 cool down 978 1/31/97
RI15TR02 R15 5 warm-up 7 1/31/97
RCMO1 CM-0204 30 cool down + 5 warm-up 2677 1/31/97
RHEAO1 HAE-1004 30 cool down + 5 warm-up 1999 1/31/97
RPO1 89215 30 cool down + 5 warm-up 1699 2/3/97
RS01 59208 30 cool down + 5 warm-up 184 2/3/97
RDWO01 B-1025 30 cool down + 5 warm-up 1695 2/3/97
RWDO1 WD 30 cool down + 5 warm-up 533 2/3/97
AAO01AO01 RI5T 1 30 cool down + 5 warm-up 1573 4/11/97
AA02A01 RIST 2 30 cool down + 5 warm-up 1357 4/11/97
Mini01 Mini-30 30 cool down + 5 warm-up 600 4/11/97
Nano01 Nano-30 30 cool down + 5 warm-up 798 4/11/97

I Test 2 I
R30T005 R30 30 cool down + 5 warm-up 1104 2/3/97
R15TRO3 R15 30 cool down + 5 warm-up 1026 2/3/97
RCM02 CM-0204 30 cool down + 5 warm-up 3035 2/3/97
RHEA02 HAE-1004 30 cool down + 5 warm-up 2323 2/3/97
RPO3 §9215 30 cool down + 5 warm-up 1716 2/10/97
RS03 $9208 30 cool down + 5 warm-up 1601 2/3/97
RDW02 B-1025 30 cool down + 5 warm-up 756 2/3/97
RWD02 WD 30 cool down + 5 warm-up 299 2/3/97
AAO01A02 RIST_1 30 cool down + 5 warm-up 1256 4/11/97
AA02A02 RIST 2 30 cool down + 5 warm-up 766 4/11/97
Mini02 Mini-30 30 cool down + 5 warm-up 568 4/11/97
Nano02 Nano-30 30 cool down + 5 warm-up 366 4/11/97

I Test 3 l
R30T008 R30 30 cool down + 5 warm-up 770 2/10/97
R15TR06 R15 30 cool down + 5 warm-up 4532 2/10/97
RCM03 CM-0204 30 cool down + 5 warm-up 2315 2/10/97
RPO5 S9215 30 cool down + 5 warm-up 1113 2/12/97
RS05 S59208 30 cool down + 5 warm-up 114 2/12/97
RDWO03 B-1025 30 cool down + 5 warm-up 2860 2/10/97
RWDO03 WD 30 cool down + 5 warm-up 1298 2/10/97
AAO01A03 RIST 1 60 cool down + 10 warm-up 1725/1751 4/11/97
AA02A03 RIST 2 60 cool down + 10 warm-up 970/1202 4/11/97
Mini03 Mini-30 60 cool down + 10 warm-up 450/467 4/14/97
Nano03 Nano-30 60 cool down + 10 warm-up 258/306 4/14/97
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I Test 4 l

R30T009 R30 30 cool down + 5 warm-up 682 2/12/97
R15TRO7 R15 30 cool down + 5 warm-up 517 2/12/97
RCM04 CM-0204 60 cool down + 10 warm-up 2330/ 2/12/97
RP06 59215 60 cool down + 10 warm-up 1704/ 2/19/97
RS06 $9208 30 cool down + 5 warm-up 218 2/12/97
RDW04 B-1025 30 cool down + 5 warm-up 556 2/12/97
RWD04 WD 30 cool down + 5 warm-up 186 2/19/97
AAOL1A04 RI5ST 1 30 cool down + 5 warm-up 1218 4/14/97
AA02A04 RIST 2 30 cool down + 5 warm-up 871 4/14/97
Mini04 Mini-30 30 cool down + 5 warm-up 439 4/14/97
Nano04 Nano-30 30 cool down + 5 warm-up 231 4/14/97
BT
R30T010 R30 60 cool down + 10 warm-up 753/ 2/20/97
R15TRO8 R15 60 cool down + 10 warm-up 1104/ 2/20/97
RCMO06 CM-0204 30 cool down + 5 warm-up 568 2/19/97
RPO7 S9215 30 cool down + 5 warm-up 1269 2/20/97
RS08 S9208 60 cool down + 10 warm-up 246/ 2/20/97
RDWO05 B-1025 60 cool down + 10 warm-up 675/ 2/20/97
RWD07 WD 60 cool down + 10 warm-up 1151/ 2/25/97
AAOQ1A05 RIST 1 30 cool down + 5 warm-up 1003 4/14/97
AA02A05 RIST 2 30 cool down + 5 warm-up 689 4/14/97
Mini05 Mini-30 30 cool down + 5 warm-up 526 4/15/97
Nano05 Nano-30 30 cool down + 5 warm-up 281 4/14/97
| Test 6 |

Filename Sensor Schedule Hits Date
R30T011 R30 30 cool down + 5 warm-up 1491 2/28/97
R15TR10 R15 30 cool down + S warm-up 2337 2/28/97
RCMO7 CM-0204 30 cool down + 5 warm-up 2661 2/28/97
RPO3 S$9215 30 cool down + 5 warm-up 1098 2/28/97
RS09 $9208 30 cool down + 5 warm-up 77 2/28/97
RWDO0S8 WD 30 cool down + 5 warm-up 73 2/28/97
AAO0]A06 RI1ST 1 30 cool down + 5 warm-up 362 4/15/97
AAQ02A06 RIST 2 30 cool down + 5 warm-up 851 4/15/97
Mini06 Mini-30 30 cool down + 5 warm-up 459 4/15/97
Nano06 Nano-30 30 cool down + 5 warm-up 308 4/16/97
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| Test 7 I

R30T013 R30 30 cool down + 5 warm-up 880 2/28/97
R15TR11 R15 30 cool down + 5 warm-up 1366 2/28/97
RCMO08 CM-0204 30 cool down + 5 warm-up 2551 2/28/97
RP09 $9215 30 cool down + 5 warm-up 1168 2/28/97
RS10 $9208 30 cool down + 5 warm-up 272 2/28/97
RWD09 WD 30 cool down + 5 warm-up 153 2/28/97
AAO01A07 RIST_1 30 cool down + 5 warm-up 1812 4/16/97
AA02A07 R15T 2 30 cool down + 5 warm-up 1129 4/16/97
Mini0Q7 Mini-30 30 cool down + 5 warm-up 603 4/16/97
Nano07 Nano-30 30 cool down + 5 warm-up 310 4/16/97
| Test 8 I
R30TO014 R30 30 cool down + 5 warm-up 897 3/1/97
R15TR12 R15 30 cool down + 5 warm-up 518 3/2/97
RCMO09 CM-0204 30 cool down + 5 warm-up 2624 3/2/97
RP10 §9215 30 cool down + 5 warm-up 1088 3/2/97
RS11 59208 30 cool down + 5 warm-up 167 3/2/97
RWD10 WD 30 cool down + 5 warm-up 67 3/2/97
AA01A08 RI5T_ 1 30 cool down + 5 warm-up 1436 4/16/97
AA02A08 RiI5T 2 30 cool down + 5 warm-up 1093 4/16/97
Mini08 Mini-30 30 cool down + 5 warm-up 417 4/16/97
Nano(8 Nano-30 30 cool down + 5 warm-up 264 4/16/97
| Test 9 |
R30T015 R30 30 cool down + 5 warm-up 1046 3/3/97
R15TR14 RI15 30 cool down + 5 warm-up 1337 3/3/97
RCM10 CM-0204 30 cool down + 5 warm-up 2258 3/3/97
RP11 89215 30 cool down + 5 warm-up 1096 3/3/97
RS12 89208 30 cool down + 5 warm-up 315 3/3/97
RWDI!1 WD 30 cool down + 5 warm-up 76 3/3/97
AA01A09 RIS5T 1 30 cool down + 5 warm-up 1603 4/16/97
AAQ02A09 RIST 2 30 cool down + 5 warm-up 867 4/16/97
Mini09 Mini-30 30 coo! down + 5 warm-up 524 4/17/97
Nano09 Nano-30 30 cool down + 5 warm-up 310 4/17/97
[ Tet1o ]
R30TO16 R30 30 cool down + 5 warm-up 1013 3/4/97
RISTR16 R15 30 cool down + 5 warm-up 1098 3/4/97
RCMI11 CM-0204 30 cool down + 5 warm-up 2514 3/4/97
RP12 $9215 30 cool down + 5 warm-up 2011 3/4/97
RS13 59208 30 cool down + 5 warm-up 160 3/4/97
RWDI12 WD 30 cool down + S warm-up 103 3/4/97
AAO01A10 R15T 1 30 cool down + 5 warm-up 1397 4/17/97
AA02A10 R15T 2 30 cool down + 5 warm-up 1295 4/17/97
Minil0 Mini-30 30 cool down + 5 warm-up 480 4/17/97
Nanol0 Nano-30 30 cool down + 5 warm-up 212 4/17/97
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Cumulative hits

APPENDIX B

Sensor Activity During Long Term Exposure to LH,

AE during sensor cool down to -350 degrees F
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Pulser:
Medium:

APPENDIX D

SIGNALS BEFORE CRYOGENIC CYCLING

AEROTECH 5.0 MHz (ENERGY = 1.0, Damping = 0.5)

Aluminum bar 18” long, 0.5” diameter

Configuration: End to end test, hot melt glue coupling
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APPENDIX E
SIGNALS AFTER SECOND CRYOGENIC CYCLE

Pulser: AEROTECH 5.0 MHz (ENERGY = 1.0, Damping = 0.5)
Medium: Aluminum bar 18” long, 0.5 diameter
Configuration: End to end test, hot melt glue coupling
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APPENDIX F
SIGNALS AFTER FIFTH CRYOGENIC CYCLE

Pulser: AEROTECH 5.0 MHz (ENERGY = 1.0, Damping = 0.5)
Medium: Aluminum bar 18” long, 0.5” diameter
Configuration: End to end test, hot melt glue coupling
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ABSTRACT

The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite
structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many
challenges. Economic justification for these structures requires, light weight, reusable
components with an infrastructure allowing periodic evaluation of structural integrity after
enduring demanding stresses during operation. A major focus has been placed on the use of
acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study
into characterizing the nature of acoustic signal propagation at very low temperatures and

developing the methodology of applying AE sensors to monitor cryogenic components.

This work addresses the question of sensor performance in the cryogenic environment. Problems
involving sensor mounting, spectral response and durability are addressed. The results of this
work provides a common point of measure from which sensor selection can be made when

testing composite components at cryogenic temperatures.
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1.0 INTRODUCTION

Three questions arise when applying AE analysis to a loaded structure in a cryogenic
environment. First, how do the sensors react to the cryogenic environment. Secondly, how does
the cryogenic environment effect the acoustic propagation characteristics in the composite and
sensor couplant. Lastly, how does the composite material behave at cryogenic temperatures.
The first of these questions is answered in this report by conducting a series of tests to
characterize how acoustic emission sensors perform when subjected to a cryogenic environment.
The later two points are works in progress and will be appended to this report as they are

completed.

Several commercially available sensors were selected for this study based upon availability, size
and frequency response. The application of AE to large composite fuel tanks, anticipated for
future launch systems, would involve many sensors (50+), to provide adequate coverage in what
is a highly attenuative material. Due to the limited space available for mounting sensors and the
weight restrictions on a launch vehicle, the size of the sensors are very important during sensor
selection. The frequency response bandwidth of the chosen sensor would need to be in the range
of 100 kHz to 2.0 MHz to ensure that the signals from the various failure modes in the composite

were detected.

Each sensor used in this study went though a series of cryogenic tests involving exposure to
temperatures down to approximately -320 °F, the nominal temperature of liquid nitrogen “LN,”.
Of particular interest was the amount and nature of the acoustic activity generated by the sensors
as they cooled to the cryogenic temperature and then warmed back up to ambient conditions.
The survivability of each sensor to thermal cycling was tested over ten thermal cycles from room
temperature (nominally 75 °F) to -320 °F and back to room temperature. Also, of interest was
how the cryogenic environment affected sensor performance. Here, the sensors were pulsed
from a common source as they cooled and the amplitude and spectral response recorded. In this
manner the fidelity of each sensor could be checked and compared between themselves and at

various temperatures.



2.0 EXPERIMENTAL

In all, twelve sensors were thermally cycled for this study. A summary of the manufacturer, size,
and construction of each sensor is given in Table 1. Each sensor was pulsed from a common 5.0
MHz ultrasonic sensor. Here, an eighteen inch long, half inch diameter 6061 -T6 aluminum rod
was used as a wave guide and the sensors and pulser were bonded with hot melt glue. After
establishing the reference condition of each sensor it was tested for cumulative activity and
frequency response variations during cool down.

Table 1. Sensors tested.

Manufacturer ]__Model _ S/N | Diameter (inch) Cable B Location | Wear Plate
Harisonic | HAE-1004 | M10056 0.40 Microdot |  End Ceramic
Harisonic CM-0204 112050 0.40 Microdot End Ceramic

Digital Wave B-1025 944240 0.43 Microdot Side Ceramic

PAC R15 AL78 0.69 Microdot Side Ceramic
PAC R30 302 0.69 Microdot Side Ceramic
PAC $9208 AC36 1.00 Microdot Side Metal
PAC WD AC81 0.69 Differential Side Ceramic
PAC $9215 AB53 0.75 BNC Side Metal
PAC R15-T1 AAO01 0.69 Microdot Top Ceramic
PAC RI15-T2 AA02 0.69 Microdot Top Ceramic
PAC Mini-30 AB50 0.40 BNC Top Ceramic
PAC Nano-30 AAO02 0.25 BNC Top Ceramic

PAC = Physical Acoustics Corporation

The primary intent of the first phase of testing was to determine how the sensors react to a
cryogenic environment. That is, what signals are generated by the sensors alone as they cool
from normal room temperature to near liquid nitrogen temperatures. To accomplish this task, the
sensors were suspended by their lead wire in a beaker submerged in a liquid nitrogen bath
(Figure 1). The air temperature from the bottom of the beaker to just below the nitrogen level
was measured with a thermocouple to be in the range of -320 °F. The acoustic emission system
was configured for continuous operation and the sensors were suspended one at a time near the
bottom of the inner beaker and monitored for 30 to 60 minutes. Lead breaks (0.5 mm HB) were
performed on the sides of the beaker and cross support holding the sensor to determine if the boil
off of the LN, along the outside of the inner beaker created any measurable AE at the sensor
position. None of the lead breaks were received by the AE system verifying that the only signals
recorded would be from the sensors themselves encountering a thermal gradient. After
completing the chill down cycle the AE system was paused and the sensor removed from the
nitrogen container. The AE system was restarted and left to run for 10 additional minutes so that
the warm-up emissions could be recorded. This process was repeated for a total of ten cryogenic
cycles or until the sensor failed to operate. Appendix A outlines the ten cryogenic tests.
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Figure 1. Configuration to measure sensor activity during cool down.

The second phase of this project involved measuring sensor performance during cool down and
at cryogenic temperatures. Here the reference frequency response was compared to the response
curves generated for each sensor as it cooled to LN, levels and stabilized. As in the initial sensor
check-out tests, an 18 inch aluminum rod was used as a waveguide between the 5.0 MHz pulser
and test AE sensor. The rod was held vertically over the cryogenic container with the AE sensor
positioned just off the bottom of the inner “chilled” beaker (Figure 2). The receiving sensor was
bonded with a proprietary cryogenic tolerant adhesive while the pulser was attached with hot
melt glue. In this manner a common excitation signal could be received and compared between
sensors at various points in the cool down cycle. An acousto-ultrasonic style system was
incorporated to take these measurements. The system fired the pulser; recorded the signal from
the AE sensor and computed the subsequent power spectrum. Measurements were taken at room
temperature and then every 15 minutes over the one hour cool down, for a total of five
measurements.
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Trigger
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Figure 2. Configuration for pulse test during cool down.



3.0 RESULTS

The sensors were compared based upon activity during cool down, activity during warm up, time
to the first 10% of cumulative activity, time to 90% of cumulative activity, stability between
cycles and cycle life. Overall acoustic activity during cool down would indicate the amount of
data that would have to be filtered out after a cryogenic structural test. The time to 10% and 90%
of cumulative activity would provide a measure of the event rate and settling time for each
sensor. Finally, the stability between cycles and cycle life of the sensor can tell which sensors
are rugged enough to be used in a cryogenic environment.

As shown in Table 2 and Figure 3, the overall noisiest three sensors during cool down were the
CM-0204 (2669 signals) followed by the HAE-1004 (1994 signals) and the B-1025 (1617
signals). On the other side of the spectrum the quietest three sensors during cool down were the
S9208 (170 signals) then the WD (489 signals) and mini-30 (592). The nature of these signals
will be described later, but the sheer magnitude of AE activity indicates that for most practical
testing situations it will not be practical to record AE activity during cool down. Not only will it
be difficult to separate the sensor noise AE from the material activity, the rate of noise related
activity may interfere with good signal collection. In other words, the high noise signal rate will
increase the probability that mixed material and noise AE signals will be collected as single
source events.

Table 2. Sensor activity

Sensor L.D. Cumulative activity Sensor L.D. Time to Sensor 1.D. Time to
during cool down 10% Maximum 90%_Maximun_1_
S$9208 170 B-1025 19 B-1025 356 |
WD 489 CM-0204 51 Nano-30 422
Mini-30 592 HAE-1004 84 CM-0204 432
Nano-30 797 Nano-30 93 Mini-30 454
R15 978 WD 89 HAE-1004 661
R30 1253 Mini-30 150 §9208 760
R15-t2 1343 R15T-2 180 R15T-1 795
R15-t] 1562 S9215 194 R15T-2 801
$9215 1616 R15 196 R30 943
B-1025 1617 R30 198 R15 1015
HAE-1004 1994 R15T-1 220 WD 1146
CM-0204 2669 $9208 265 89215 1219

After the sensors had reached thermal equilibrium at -320 °F, the data collection system was
paused and the sensors removed from the inner beaker. The AE system was then allowed to
continue acquiring data during the warm-up. In general, very little AE activity was recorded
during the warm-up, and after approximately S minutes at room temperature no additional
activity was recorded for any of the sensors. Overall, less than 10% of the cumulative activity
recorded during the entire test, cool down and warm-up, was recorded during the warm-up
period. The noisiest three sensors during the warm-up period were the WD, S9208 and B-1025
sensors. The quietest sensors were the Nano-30 followed by the HAE-1004 and CM-0204, all
with less than 0.3% activity during the warm-up period.
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Figure 3. Sensor activity during first cycle cool down to -320 °F

By observing the second activity plot (Figure 4), one can see that each sensor responds to the
cool down at a slightly different rate. The time when the activity has reached 10% and 90%
allows provides an indication of the time required to wait after exposing the sensors to a
cryogenic environment before the majority of AE recorded is known not to come from the sensor
itself cooling down. These times thus provide a measure of how long AE measurements would
need to be paused as the structure cools down before data acquisition could begin. The B-1025
sensor stabilized the quickest (356 seconds) of all the sensors tested followed by the Nano-30
(422 seconds) and the CM-0204 (432 seconds). The longest settling time of the sensors came
from the S9215, which took over 20 minutes to begin to level out. The WD and R15 were also
slow taking over 17 minutes to stabilize. A summary of the settling times for each system is
provided in Table 3. A long term exposure test (1 hour) confirmed that little activity was
produced after the initial cooldown and that after approximately 45 minutes no appreciable
activity was produced (Appendix B)

The characteristics of each sensor over the ten cryogenic cycles was fairly repeatable. No
appreciable changes in the frequency, amplitude or energy content of the signals were noted.
There was a slight decrease in the cumulative AE activity with cycling, but as shown in Figure 5,
the amount of AE generated between cryogenic varied greatly enough that a trend could not be
established for all sensors. Overall, no more than a 10% decrease in signal activity was present
for any of the sensors tested. Appendix C summarizes the activity rates for each sensor during
the ten cryogenic cycles.

Only two of the sensors tested failed during the cryogenic cycling. The HAE-1004 sensor failed
after the second cycle while the B-1025 sensor failed after the fifth cycle. In both cases the wear



plate on the sensor face shattered and debonded from the sensor. In general the features of the
AE activity covered the entire spectrum which would make it difficult to post filter the data to
eliminate the signals originating from the cool down. Classically the most descriptive features
used to describe AE signals are its amplitude, energy and frequency spectrum. Typical
amplitude histograms and energy versus amplitude plots are shown in Figures 6 and 7 for the
first cool down test.
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Figure 4. Sensor activity during first cycle cool down to -320 °F
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During the second phase of sensor testing the effect the cryogenic environment had on the
fidelity of each sensor was measured. Here, each AE sensor was pulsed with a common signal
the subsequent reaction recorded. In general, there were no observable or noteworthy changes in
the resonance peaks as the sensors cooled. In fact, as shown in Figure 8, the relative amount of

signal energy increased for the resonant peaks when the sensors were coldest. An additional

benefit of this characteristic is that if sensor spacing is determined at room temperature then

adequate coverage is guaranteed at cryogenic temperatures. The signals and power spectra for

each sensor at their reference condition as well as after two and five cryogenic cycles are
provided in Appendix D through E.
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4.0 SENSOR PERFORMANCE TESTING AT -440 °F

A series of tests were planned for testing the sensors at approximately -440 °F, the temperature
of liquid helium. At these temperatures special hardware is necessary to contain and transport
liquid helium due to its narrow operational temperature range. The facilities to handle the LH,
were to be made available through MSFC’s Space Sciences Division. The hardware to support
the transducers was designed and fabricated at UAH.

Due to scheduling conflicts and difficulty in acquiring the necessary hardware this portion of the
task has not been completed. Now though, with all the hardware in place, the helium tests
should be able to be completed in a timely manner. When the testing is completed the results
will be appended to this report.

5.0 TENSILE TESTING AT -320 °F

The process of tensile testing a composite sample while submerged in a cryogenic fluid meant
the development of a specialized “wet grip”. The grip serves to hold one end of the composite
sample while that end is submerged in LN, and is attached to the activation ram of a hydraulic
tensile testing machine. A schematic of the grip system is shown in Figure 9 and 10.
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Figure 9. Cryogenic grip
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The grip mechanism has just recently been completed and is now undergoing stress testing to

ensure that it will not fail during operation. Testing of composite samples will begin shortly and
the results appended to this report.
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6.0 CONCLUSIONS

The sensor tests addressed in this report have shown that there are several commercially
available sensors rugged enough and with sufficient fidelity to be used during AE testing in a
cryogenic environment. In general, the sensor activity during cool down begins to stabilize after
approximately 10 minutes and reaches an insignificant level after 45 minutes at cryogenic (-320
°F) temperatures. As expected, the larger the sensor, the longer it takes to stabilize and lower the

initial activity rate due to the larger thermal mass.

The nature of the AE activity recorded during cool down covers a broad range of parametric and
spectral (frequency) values. Post filtering of this data based upon simple amplitude, energy or
frequency filters may not be possible. To ensure that the cryogenic signals from the sensors are
not recorded as material AE one will most likely have to wait until the sensor thermally stabilizes
with the structure or devise some method of prechilling the sensors before the structure is

thermally or mechanically loaded.

The performance of the sensors appears to be similar in the cryogenic environment as at room
temperature. The signals recorded by the sensors and their subsequent power spectra remain
unchanged during the cool down. The only noticeable difference is a slight increase in the
energy of the signals at cryogenic temperatures. It is not known at this time whether the increase
in energy is solely attributable to the sensor or some function of the waveguide being

supercooled.
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7.0 APPENDICES

APPENDIX A

Summary of Cryogenic Tests

I Test 1 I
Filename Sensor Schedule Hits Date

R30T004 R30 30 cool down + 5 warm-up 1310 1/31/97
R15TRO1 R15 30 cool down 978 1/31/97
RI5TRO2 R15 5 warm-up 7 1/31/97
RCMO1 CM-0204 30 cool down + 5 warm-up 2677 1/31/97
RHEAO1 HAE-1004 30 cool down + 5 warm-up 1999 1/31/97
RPO1 89215 30 cool down + 5 warm-up 1699 2/3/97
RS01 $9208 30 cool down + 5 warm-up 184 2/3/97
RDWO1 B-1025 30 cool down + 5 warm-up 1695 2/3/97
RWDO1 WD 30 cool down + 5 warm-up 533 2/3/97
AAO01A01 RI5T 1 30 cool down + 5 warm-up 1573 4/11/97
AA02A01 RIST 2 30 cool down + 5 warm-up 1357 4/11/97
Mini01 Mini-30 30 cool down + 5 warm-up 600 4/11/97
Nano01 Nano-30 30 cool down + 5 warm-up 798 4/11/97

| Test2 I
R30T005 R30 30 cool down + 5 warm-up 1104 2/3/97
RI5TRO3 R15 30 cool down + 5 warm-up 1026 2/3/97
RCMO02 CM-0204 30 cool down + 5 warm-up 3035 2/3/97
RHEA(2 HAE-1004 30 cool down + 5 warm-up 2323 2/3/97
RP03 S9215 30 cool down + 5 warm-up 1716 2/10/97
RS03 $9208 30 cool down + 5 warm-up 1601 2/3/97
RDWO02 B-1025 30 cool down + 5 warm-up 756 2/3/97
RWDO02 WD 30 cool down + 5 warm-up 299 2/3/97
AAO01A02 RIST_1 30 cool down + 5 warm-up 1256 4/11/97
AA02A02 RIST 2 30 cool down + 5 warm-up 766 4/11/97
Mini02 Mini-30 30 cool down + 5 warm-up 568 4/11/97
Nano02 Nano-30 30 cool down + 5 warm-up 366 4/11/97

ECE
R30T008 R30 30 cool down + 5 warm-up 770 2/10/97
R15TRO6 R15 30 cool down + 5 warm-up 4532 2/10/97
RCMO03 CM-0204 30 cool down + 5 warm-up 2315 2/10/97
RPO5 $9215 30 cool down + 5 warm-up 1113 2/12/97
RS05 S9208 30 cool down + 5 warm-up 114 2/12/97
RDWO03 B-1025 30 cool down + 5 warm-up 2860 2/10/97
RWDO03 WD 30 cool down + 5 warm-up 1298 2/10/97
AAO01A03 R15T 1 60 cool down + 10 warm-up 1725/1751 4/11/97
AAQ02A03 RI15T 2 60 cool down + 10 warm-up 970/1202 4/11/97
Mini03 Mini-30 60 cool down + 10 warm-up 450/467 4/14/97
Nano03 Nano-30 60 cool down + 10 warm-up 258/306 4/14/97
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| Test 4 |

R30T009 R30 30 cool down + 5 warm-up 682 2/12/97
R15TRO7 RI15 30 cool down + 5 warm-up 517 2/12/97
RCMO04 CM-0204 60 cool down + 10 warm-up 2330/ 2/12/97
RPO6 S9215 60 cool down + 10 warm-up 1704/ 2/19/97
RS06 S9208 30 cool down + 5 warm-up 218 2/12/97
RDWO04 B-1025 30 cool down + 5 warm-up 556 2/12/97
RWDO04 WD 30 cool down + 5 warm-up 186 2/19/97
AAQ1A04 RIST 1 30 cool down + 5 warm-up 1218 4/14/97
AAQ02A04 RI5T 2 30 cool down + 5 warm-up 871 4/14/97
Mini04 Mini-30 30 cool down + 5 warm-up 439 4/14/97
Nano04 Nano-30 30 cool down + 5 warm-up 231 4/14/97
[ Tes ]
R30T010 R30 60 cool down + 10 warm-up 753/ 2/20/97
R15TRO8 R15 60 cool down + 10 warm-up 1104/ 2/20/97
RCMO06 CM-0204 30 cool down + 5 warm-up 568 2/19/97
RPO7 $9215 30 cool down + 5 warm-up 1269 2/20/97
RSO08 $9208 60 cool down + 10 warm-up 246/ 2/20/97
RDW05 B-1025 60 cool down + 10 warm-up 675/ 2/20/97
RWD07 WD 60 cool down + 10 warm-up 1151/ 2/25/97
AAO01A0S RI5T 1 30 cool down + 5 warm-up 1003 4/14/97
AAQ2A05 RI5ST 2 30 cool down + 5 warm-up 689 4/14/97
Mini05 Mini-30 30 cool down + 5 warm-up 526 4/15/97
Nano05 Nano-30 30 cool down + 5 warm-up 281 4/14/97
[ Tesie ]

Filename Sensor Schedule Hits Date
R30T011 R30 30 cool down + 5 warm-up 1491 2/28/97
R15TR10 R15 30 cool down + 5 warm-up 2337 2/28/97
RCMO7 CM-0204 30 cool down + 5 warm-up 2661 2/28/97
RPO8 S9215 30 cool down + 5 warm-up 1098 2/28/97
RS09 $9208 30 cool down + 5 warm-up 77 2/28/97
RWDO8 WD 30 cool down + 5 warm-up 73 2/28/97
AAO01A06 RI15T_1 30 cool down + 5 warm-up 362 4/15/97
AA02A06 R15T 2 30 cool down + 5 warm-up 851 4/15/97
Mini06 Mini-30 30 cool down + 5 warm-up 459 4/15/97
Nano06 Nano-30 30 cool down + 5 warm-up 308 4/16/97
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l Test 7 I

R30T013 R30 30 cool down + 5 warm-up 880 2/28/97
R15TRI11 R15 30 cool down + 5 warm-up 1366 2/28/97
RCMO8 CM-0204 30 cool down + 5 warm-up 2551 2/28/97
RP09 89215 30 cool down + 5 warm-up 1168 2/28/97
RS10 59208 30 cool down + 5 warm-up 272 2/28/97
RWD09 WD 30 cool down + 5 warm-up 153 2/28/97
AA01A07 RIST 1 30 cool down + 5 warm-up 1812 4/16/97
AA02A07 RI5T 2 30 cool down + 5 warm-up 1129 4/16/97
Mini07 Mini-30 30 cool down + 5 warm-up 603 4/16/97
Nano07 Nano-30 30 cool down + 5 warm-up 310 4/16/97
| Test 8 I
R30TO14 R30 30 cool down + 5 warm-up 897 3/1/97
R15TR12 R15 30 cool down + 5 warm-up 518 3/2/97
RCMO09 CM-0204 30 cool down + 5 warm-up 2624 3/2/97
RP10 §9215 30 cool down + 5 warm-up 1088 3/2/97
RS11 $9208 30 cool down + 5 warm-up 167 3/2/97
RWDI0 WD 30 cool down + 5 warm-up 67 3/2/97
AA01A08 RIS5T 1 30 cool down + 5 warm-up 1436 4/16/97
AA02A08 RI5T 2 30 cool down + 5 warm-up 1093 4/16/97
Mini08 Mini-30 30 cool down + 5 warm-up 417 4/16/97
Nano08 Nano-30 30 cool down + 5 warm-up 264 4/16/97
| Test 9 l
R30T015 R30 30 cool down + 5 warm-up 1046 3/3/97
R15TR14 RI15 30 cool down + 5 warm-up 1337 3/3/97
RCMI10 CM-0204 30 cool down + 5 warm-up 2258 3/3/97
RP11 S9215 30 cool down + 5 warm-up 1096 3/3/97
RS12 S9208 30 cool down + 5 warm-up 315 3/3/97
RWD11 WD 30 cool down + 5 warm-up 76 3/3/97
AAO01A09 RI5T_1 30 cool down + 5 warm-up 1603 4/16/97
AA02A09 RIST 2 30 cool down + 5 warm-up 867 4/16/97
Mini09 Mini-30 30 cool down + 5 warm-up 524 4/17/97
Nano09 Nano-30 30 cool down + 5 warm-up 310 4/17/97
I Test 10 l
R30T016 R30 30 cool down + 5 warm-up 1013 3/4/97
R15TR16 R15 30 cool down + 5 warm-up 1098 3/4/97
RCM11 CM-0204 30 cool down + 5 warm-up 2514 3/4/97
RP12 $9215 30 cool down + 5 warm-up 2011 3/4/97
RS13 $9208 30 cool down + 5 warm-up 160 3/4/97
RWDI12 WD 30 cool down + 5 warm-up 103 3/4/97
AAO01A10 R15T_1 30 cool down + 5 warm-up 1397 4/17/97
AA02A10 RI5T 2 30 cool down + 5 warm-up 1295 4/17/97
Minil0 Mini-30 30 cool down + 5 warm-up 480 4/17/97
Nanol10 Nano-30 30 cool down + 5 warm-up 212 4/17/97
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Cumulative hits

APPENDIX B

Sensor Activity During Long Term Exposure to LH,

AE during sensor cool down to -350 degrees F
Long duration test
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Pulser:
Medium:

Volts

Intensity

APPENDIX D

SIGNALS BEFORE CRYOGENIC CYCLING

AEROTECH 5.0 MHz (ENERGY = 1.0, Damping = 0.5)
Aluminum bar 18” long, 0.5” diameter
Configuration: End to end test, hot melt glue coupling
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APPENDIX E
SIGNALS AFTER SECOND CRYOGENIC CYCLE

Pulser: AEROTECH 5.0 MHz (ENERGY = 1.0, Damping = 0.5)
Medium: Aluminum bar 18” long, 0.5 diameter
Configuration: End to end test, hot melt glue coupling
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APPENDIX F
SIGNALS AFTER FIFTH CRYOGENIC CYCLE

Pulser: AEROTECH 5.0 MHz (ENERGY = 1.0, Damping = 0.5)
Medium: Aluminum bar 18” long, 0.5” diameter
Configuration: End to end test, hot melt glue coupling
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